CHAPTER 16 REVIEW

Reaction Energy

SECTION 1

SHORT ANSWER Answer the following questions in the space provided.

1. For elements in their standard state, the value of ΔH_f^0 is __0__.

2. The formation and decomposition of water can be represented by the following thermochemical equations:

 \[
 \text{H}_2(g) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{H}_2\text{O}(g) + 241.8 \text{ kJ/mol}
 \]

 \[
 \text{H}_2\text{O}(l) + 241.8 \text{ kJ/mol} \rightarrow \text{H}_2(g) + \frac{1}{2}\text{O}_2(g)
 \]

 a. Is energy being taken in or is it being released as liquid H$_2$O decomposes?

 positive

 b. What is the appropriate sign for the enthalpy change in this decomposition reaction?

PROBLEMS Write the answer on the line to the left. Show all your work in the space provided.

3. **70°C** If 200. g of water at 20°C absorbs 41 840 J of energy, what will its final temperature be?

4. **-28.9 kJ** Aluminum has a specific heat of 0.900 J/(g·°C). How much energy in kJ is needed to raise the temperature of a 625 g block of aluminum from 30.7°C to 82.1°C?

5. The products in a reaction have an enthalpy of 458 kJ/mol, and the reactants have an enthalpy of 658 kJ/mol.

 -200. kJ/mol a. What is the value of ΔH for this reaction?
SECTION 1 continued

b. Which is the more stable part of this system, the reactants or the products?

6. The enthalpy of combustion of acetylene gas is -1301.1 kJ/mol of C$_2$H$_2$.

 a. Write the balanced thermochemical equation for the complete combustion of C$_2$H$_2$.

 $$ \text{C}_2\text{H}_2(g) + \frac{5}{2}\text{O}_2(g) \rightarrow 2\text{CO}_2(g) + \text{H}_2\text{O}(l) + \text{heat energy} $$

 320 kJ

 b. If 0.25 mol of C$_2$H$_2$ reacts according to the equation in part a, how much energy is released?

 78 g

 c. How many grams of C$_2$H$_2$ are needed to react, according to the equation in part a, to release 3900 kJ of energy?

7. $-850. \text{ kJ/mol}$ Determine the ΔH for the reaction between Al and Fe$_2$O$_3$, according to the equation $2\text{Al} + \text{Fe}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2\text{Fe}$. The enthalpy of formation of Al$_2$O$_3$ is -1676 kJ/mol. For Fe$_2$O$_3$ it is -826 kJ/mol.

8. -196.0 kJ/mol Use the data in Appendix Table A-14 of the text to determine the ΔH for the following equation.

 $$ 2\text{H}_2\text{O}_2(l) \rightarrow 2\text{H}_2\text{O}(l) + \text{O}_2(g) $$